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Abstract. Numerical results from a parallel implementation of an iterative substructuring algo-
rithm are reported. The algorithm is for solving scalar, self-adjoint elliptic partial differential equations
in three dimensions. Results are given for two variants of the algorithm. In the first variant, exact
interior solvers are used; in the second, one multigrid V-cycle is used to approximately solve the inte-
rior problems. The results are compared to theoretical behavior of the algorithm reported in previous
work.
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1. Introduction. Much work on domain decomposition algorithms has focused
on the abstract analysis of the algorithms, with less discussion of implementation issues
and few nontrivial numerical results. This paper focuses on the implementation, on
a state-of-the-art parallel machine, of several iterative substructuring algorithms for
elliptic partial differential equations in three dimensions. Full analysis of some of the
algorithms, using standard domain decomposition techniques, can be found in Smith
[19] and Dryja, Smith, and Widlund [11]. The underlying algorithm was first introduced
in Smith [20].

[terative substructuring algorithms are domain decomposition algorithms in which
nonoverlapping subdomains are used. A preconditioned conjugate gradient method
is used to solve the linear system obtained by a finite element discretization of the
partial differential equation. The preconditioner is obtained by separately solving linear
systems associated with the interiors of the subdomains, the faces between subdomains,
and a system that provides global coupling between the subdomains.

There is a fundamental difference in the nature of finite element solutions of elliptic
problems in two and three dimensions, certain results do not carry over from two to
three dimensions. Hence new analysis and numerical experiments must be carried out
for problems in three dimensions. FEarlier theoretical work on the subject which has
strongly influenced our work can be found in Bramble, Pasciak, and Schatz [4], Dryja
[10], Dryja and Widlund [12], Mandel [18], and Smith [19]. For a modern treatment of

iterative substructuring algorithms in three dimensions, see Dryja, Smith, and Widlund
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[11]. Other large-scale experimental work in domain decomposition is described in
Bjorstad and Hvidsten [1], Bjgrstad, Moe, and Skogen [2], Keyes and Gropp [14], [15],
De Roeck [8], De Roeck and Le Tallec [9], Le Tallec, De Roeck, and Vidrascu [16], and
Mandel [17].

Any good iterative substructuring algorithm with exact interior solvers can be re-
formulated to use approximate interior solvers. This approach has been analyzed with
some success in Borgers [3] and Haase, Langer, and Meyer [13]. In this paper we report
on experiments in which both approximate and exact interior solvers are used. We use
multigrid for the approximate interior solver in our experiments.

This paper is organized as follows. In Section 2 we introduce the algorithm us-
ing matrix notation. In Section 3 we discuss the implementation of the algorithm on
distributed-memory machines. In Section 4, we present numerical results for some piece-
wise constant coefficient problems. In Section 5, we discuss future work which will focus
on the application of the algorithms to more difficult multicomponent elliptic partial
differential equations.

2. Matrix Form of Preconditioner. Consider a scalar, second-order, self-adjoint,
H'-coercive, bilinear form aq(u,v) on  C R* and impose a homogeneous Dirichlet
boundary condition on I'y C 92 and a Neumann boundary condition on 99 \ I'y. We
assume that the underlying elliptic operator has no zero-order terms. Let Hllo (Q) be
the subspace of functions in H'(Q) that vanish on T'g. The variational problem is to

find w € HE (Q) such that
ag(u,v) = (f,v), Vvé€ H%O(Q).

We triangulate the domain € using the usual rules for finite element triangula-
tions. Let V() C H{ () be the space of continuous, piecewise linear, functions on
the triangulation that vanish on I'y. In addition, for the construction of the precon-
ditioner, we assume that the set of elements is partitioned into disjoint substructures
;. Let H be the characteristic diameter of the substructures; that is, assume that
there exist constants ¢ and ' independent of A and H such that for all substructures
cH < diam(€2;) < C'H. In the experiments reported here, the substructures are always
brick-shaped, but this is not necessary for the algorithm.

The discrete problem is to find u"* € V*(Q) such that

(1) ag(u”, o™y = (f,0"), Vo' e V).

If u" is expanded in the standard nodal basis, u" = Y, ur¢s, the variational problem
(1) can be written as the linear system

Ku=f.

In previous work [19], we constructed preconditioners for this system that involve
separately solving linear systems associated with the interiors of the subdomains, the
faces shared by pairs of subdomains, and a system associated with the remaining degrees
of freedom. The application of our preconditioner results in a convergence rate that is
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independent of the number of subdomains and is independent of jumps in the coefficients
of the partial differential equation between subdomains.

Convergence of the preconditioned conjugate gradient method is determined by
the distribution of the eigenvalues of the preconditioned matrix, B~'K. In particular,
the number of iterations needed to achieve a fixed accuracy of the solution can be
bounded by a constant times the square root of the condition number of the matrix,
#(B™'K). Most of the theoretical work on domain decomposition algorithms focuses
on obtaining bounds on the condition number. In this work, we report on condition
numbers, iteration counts, and total solution time and compare these to the behavior
predicted by theory.

We partition the unknown coefficients into those associated with the interiors of
the subdomains, u;, those associated with the faces shared by exactly two subdomains,
up, and those shared by more than two subdomains (the wirebasket), uy,. We use
ug to denote the vector of coefficients (ug,uy ). In addition, we let u?) represent the
coeflicients associated with the closure of subdomain €2;.

We express the inverse of the stiffness matrix in partially factored form.

1 -1

I —I\'II Krp —I\'II Krw I 0 0 I\'II 0 0 I 0 0 I 0 0
-1 -1 T o—1

0 I 0 0 I —SLnSFrw 0 Spp O 0 I 0 —KipK;p I 0
-1 T -1 T =1

0 0 I 0 0 I 0 0 SWW 0 _SFWSFF I —I\IWI\II 0 I

The matrix Spp represents that part of the Schur complement, after the interior
nodes have been eliminated, that is associated with the coupling between the nodes
on the faces of the subdomains. Sy is the Schur complement associated with the
wirebasket once the unknowns of the interior and the faces have been eliminated. We
do not explicitly form these matrices; instead, the preconditioner is constructed by
replacing various blocks with more computationally attractive matrices. We note that
K77, Syr, SprSrew, and Siphy, may potentially be replaced.

The Ky is a block diagonal matrix with a block for each subdomain interior. For
K7 we use either a sparse factorization (in particular, the Yale Sparse Matrix Package
which uses the minimum-degree algorithm to reorder to reduce fill-in) or one or several
multigrid V-cycles to approximate the action of the inverse. In the latter case, the
approximate inverse can be written as Rﬁl = (I — M,)K;}'. M, is the symmetric
error iteration matrix for v multigrid V-cycles, and p(M,) < 1. We note that there
is considerable freedom in choosing the multigrid solver and the number of V-cycles.
When exact interior solvers are used, we can eliminate the unknowns u; initially and
iterate on only ug, using one solver involving K;; per iteration. Once ug is known, we
can backsolve for u;. If an approximate solver is used for the interior, then two interior
solvers are needed per iteration, and all of the variables are present in the iterative
process.

We replace the Schur complement Spp with a block diagonal matrix with one
block for each face. Let Spp be the generic substitution. Several candidates exist for
the matrix blocks. They are all derived by extending earlier results for problems in two
dimensions.



1. We can explicitly use the blocks from the Schur complement. The advantage of
this approach is that the block is automatically well adapted for each differential
equation. Unfortunately, it is quite expensive to calculate the blocks except for
small subdomains. This method may be needed for extremely ill-conditioned
problems where no good substitutes exist.

2. We can use a suitable scaling of the J operator. The J operator is the square
root of the two-dimensional discrete Laplacian on a regular, rectangular mesh.
See Bramble, Pasciak, and Schatz [4] for a discussion of why this leads to good
results. It has been shown that J is spectrally equivalent to the explicit block of
the Schur complement. It is computationally cheap to apply the action of J=1
to a vector. It does not, however, adapt to the particular partial differential
equation.

3. For constant-coefficient elliptic partial differential equations on rectangular sub-
domains with a uniform finite difference mesh, we can exactly diagonalize the
Schur complement associated with a face, using fast sine transforms. For two
dimensions, Chan and Hou [5] have proposed the use of this fast spectral de-
composition to approximate the actual Schur complement. This approach could
be extended to three dimensions. Again, as with the J operator, this requires
that we use a regular, rectangular mesh on brick-shaped subdomains.

4. We could use a multilevel preconditioner. This is an extension to three dimen-
sions of the hierarchical Schur complement preconditioner considered in Smith
and Widlund [21]; see also Haase, Langer, and Meyer [13].

5. Another approach is to use the tangential component of the original operator
restricted to that face. It can be obtained easily and adapts reasonably well
to the partial differential equation. This approach is taken in Chan and Keyes
[6] and Keyes and Gropp [15]. It does not perform well, however, when the
components of the operator that are normal to the face dominate.

6. The method of probing (see Chan and Keyes [6] and Chan and Mathew [7])
could be used to calculate diagonal or band diagonal approximations to the
Schur complement on each face.

We observe that the operator SppSpw maps values from the boundaries of the faces
to the faces. It is known that the most important property of the mapping is that it
maps a constant value on the boundary of the face onto the face as the same constant.
We use a simple mapping that preserves this property. We map the average of the
unknowns on the boundary of the face onto the face; see Smith [19] for the underlying
theory. Let 77 denote this mapping. More sophisticated interpolation schemes are also
possible and may be needed for more difficult problems.

For Sy4y, inspired by Mandel [18], we use the matrix defined by the following
minimization problem:

(2) min - miné;(H/h)(ujy) — =) 1wy = w0O=0) — iy fiv.

The 2 is a vector of all ones of the same dimension as g%) We let Gww denote the
matrix defined by the minimization given above. For nontrivial problems, a diagonal,
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or block diagonal, matrix, that is adapted to the particular partial differential equation
may be substituted in place of the identity matrix in the above formula. A simpler choice
for this part of the preconditioner would be the block diagonal part of the original
stiffness matrix associated with the wirebasket. This choice, however, results in a
preconditioned system whose condition number grows faster than C'/H? while the
former choice results in a condition number bounded by (1 + log(H/h))?, see Smith
[19].

We write the generic form of the inverse of the preconditioner as

e e K
I —I\II Krp —I\II Krw I 0 0
T
0 I 0 o I -T —I\IF II
0 0 I 0 0 I o -7 I —I\IW II 0

We consider five specific preconditioners in the numerical studies.
1. Diagonal preconditioning of the original stiffness matrix. We denote the pre-
conditioner by D.
2. Two preconditioners that use exact interior solvers.
a) The first version involves solving the wirebasket problem with the tech-
nique introduced above and in Smith [19]. We can express the preconditioner
as

Bglz(T]T) W (T J)+(é)5“;}p(1 0).

b) In the second version, we solve the wirebasket problem using a diagonal
matrix

Bglz(g)DV}}W(O 1)+(é)§g;(1 0).

3. The next two versions use approximate solvers on the interior subproblems.

a)
g1 (1 — K7 K15 Kt o0 I 0
Gt 0 I 0 B —KLK 1)

g (1 — K 'Kip K 0 ]N 0
pETR0 I 0 B ~KLKib 1)

For the piecewise constant coefficient problems considered in this paper, we use a multi-
ple of the J operator as our face preconditioner. For our model problems this approach
works almost as well as the computationally more expensive explicit Schur complement.



3. Implementation Issues. We have implemented the algorithm on a distributed-
memory machine. Each processor has its own local memory and can communicate,
either directly or indirectly, with all other processors by using explicit message passing.
The specific architecture is that of the Intel iPSC/860 and Touchstone DELTA System.
These machines have from 8 to 528 Intel 1860 processors, each of which is capable of
sustained rates of more than 4 megaflops with compiled Fortran or C. Their peak per-
formance for hand-coded assembler is considerably higher. Each processor has between
8 and 16 megabytes of local memory. The Intel iPSC/860 machine has a hypercube
connection between the nodes, while the Touchstone DELTA has a two-dimensional
mesh connection.

Communication time on these machines is slow compared to the floating-point
speed. Hence, data locality and the minimization of communication are vital.

3.1. Basic Description of Our Implementation. The particular implemen-
tation of the algorithm introduced above is closely related to the work of Keyes and
Gropp [14] for problems in two dimensions. Keyes and Gropp subdivide the domain
into rectangular tiles. Each tile is then discretized by using a regular mesh. This is a
very natural approach combining flexibility of the domain with regular subdomains and
the possibility of local uniform mesh refinement.

The three-dimensional domain is partitioned into brick-shaped subdomains each of
which is assigned a uniform finite element or finite difference mesh. To simplify the
coding, we require that adjacent subdomains share an entire face, entire edge, or a
vertex; see Fig. 3.1. This requirement is necessary for our implementation, but not for
the underlying mathematical algorithms.

Unacceptable partition Acceptable partition

Fig. 1. Acceptable and unacceptable partitions of a domain

Each processor is assigned one or more subdomains. The information pertaining to
the interior of the subdomain is uniquely owned by that processor and is not directly
available to any other processor. Each face, edge, and vertex is jointly owned by several
subdomains and hence potentially by several processors. Because of this joint ownership,
whenever a change is made to the part of the solution associated with a face, edge, or
vertex of one subdomain, this information must be conveyed to the other joint owners
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by using explicit message passing. We refer to this process as merging of partial data.
For each face, vertex, and edge we designate one of the joint owners as the main owner
and the others as auxiliary owners.

Essentially three types of communication between processors are required when the
preconditioned conjugate gradient method is used to solve the linear system. The first
is multiplication by the stiffness matrix. After the calculation of the local contribution
to the matrix multiplication, the parts of the product vector that are shared by two or
more processors must be merged. This merging of partial results can be performed in
several ways. At this time a naive approach is used. The partial sums on each face, edge,
and vertex are accumulated by the main owner and then sent out to the joint owners.
For large problems, when using the full preconditioner, we find that less than five
percent of the time is spent doing communication related to the matrix multiplication.
With diagonal preconditioning, the matrix multiply dominates the entire solution time.
Hence, optimizing the communication in the matrix multiply becomes important.

The application of the preconditioner is the most expensive operation in terms of
communication. The principal reason is that the preconditioner is designed to provide
for global communication of information in each step of the iteration process. When
less communication is provided, more iterations are needed, however, at a lower cost
per iteration. With simple diagonal preconditioning, for instance, no cross-processor
communication is needed. This fact suggests that for many well-conditioned problems
diagonal scaling is the optimal approach for parallel computing systems of the type
considered in this paper.

We list below the steps currently used in the application of the preconditioner Bz'.
The steps in braces are the additional steps needed when approximate interior solvers
are used.

1. {Approximate solvers on interior problems.}

2. {Merge results.}

3. Interpolate face averages onto the edges.

4. Merge results.

5. Calculate an average on the wirebasket for each subdomain, and send off to
coarse solver.

6. Solve face problems and coarse problem simultaneously.

7. Interpolate coarse solution to the wirebasket.

8. Merge results.

9. {Approximate solvers on interior problems.}
The conjugate gradient method requires several inner products per iteration. When
possible, we use a direct call to a low-level implementation of a cross—processor inner
product.

4. Experimental Results for Piecewise Constant Coefficient Problems.
In this section we report on experiments with scalar elliptic problems with piecewise
constant coefficients. The reason for examining such problems is threefold: we can
compare the well-developed theory with the numerical results, we can obtain a lower
bound on how well the algorithm performs for more difficult problems, and we can
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resolve questions about the optimal scaling of different parts of the preconditioner.

The total solution time depends on the number of iterations needed and the average
amount of time needed per iteration. Information useful to compare different algorithms
is provided by the number of iterations needed to obtain a fixed accuracy of the solution.
The square root of condition number of the preconditioned system gives a bound on
the number of iterations needed.

4.1. On the Local Bounds. In this algorithm, as with most iterative substruc-
turing algorithms (see Dryja, Smith, and Widlund [11]), it is possible to bound the
condition number of the preconditioned matrix by bounds obtained locally, that is,

Ci
R(BG'S) < =,
min ¢;
where the ¢; and C; satisfy
c&(i)TBg)g(i) < E(Z')TS(Z')E(Z') < C'Z.Q(Z')TBS)E(Z')7 Yo,

We wish to determine how close the local bounds are to the actual condition numbers as
a function of the number of subdomains. We have performed two sets of experiments,
one using the exact blocks of the Schur complement, and the other using the J operator
as the face preconditioner. We make two observations from Table 1:
e The condition numbers when using either the explicit Schur complement or the
J operator are virtually identical for the Laplace operator.
e The bounds obtained from the local analysis quite closely predict the condition
numbers even for a relatively small number of subdomains.
The positions in the table denoted by a dash are cases for which experiments were not
carried out because of time or memory constraints.

TABLE 1
Condition numbers and local bounds

Explicit Schur Complement J Operator

Local Number of Subdomains Local Number of Subdomains
H/h | Bound 27 64 125 216 | Bound 27 64 125 216
4 9.66 8.33 877 882 922 | 1025 872 941 935 992
5 11.18  9.57 10.28 10.20 10.68 | 12.10 9.86 10.78 10.61 11.30
6 12.40 10.87 11.52 11.43 - 13.64 11.05 12.07 11.85 12.89
7 14.04 11.83 12.63 - - 15.07  11.96 13.56 13.30 14.51
8 15.86 12.83 14.05 - - 16.31  12.87 15.00 14.70 16.06

9 17.59  13.62 - - - 17.54  13.63 16.37 - -
10 19.23 - - - - 19.26  14.38 17.67 17.61 18.91
16 - - - - - - 21.12 2420 24.16 25.98
20 - - - - - - 24.15 27.88 27.78 29.83




4.2. On the Scaling of the Coarse Problem. We can express the precondi-
tioned problem when using exact interior solvers as

Bélz(j}T)G;VlW(T 1)+(é)§g;(1 0).

The mathematical analysis of the algorithm (see Smith [19] and Dryja, Smith, and
Widlund [11]) tells us that asymptotically, for large H/h, we should scale Gww by a
factor &;(H/h) = C(1 +log(H/h)). The analysis gives no information, however, about
the selection of the constant C' nor whether the scaling is important for relatively small
values of H/h. We shall refer to the case with 6;(H/h) = 1 as the natural scaling. In
our experiments, we determine for each mesh size the optimal scaling 6;( H/h) using a
simple bisection method and compare the condition number to that obtained using the
natural scaling. The results are presented in Table 2.

A related question is whether, in the construction of Gy (see equation (2)), we
should scale the diagonal elements for the nodes associated with the vertices of the
subdomains differently from those nodes associated with the edges. The most natural
choice is to scale the former elements by 1/2, since those nodes are contained in exactly
twice as many subdomains. We refer to the resulting choice as a weighted Gyw. We
make the following conclusions from Table 2:

e For the range of computationally practical meshes on the subdomains (i.e.,
H/h < 32), the natural scaling is only trivially worse than the optimal scaling.

o Using the weighted Gyyw results in only a trivial improvement in the condition
number.

TABLE 2
Natural vs. optimal scaling of coarse problem: condition numbers

G0 Scaling H/h
4 8 12 16 20 24 28 32
Natural =~ Natural 9.4 15.0 20.1 24.2 279 31.1 33.9 36.5
Optimal 88 14.0 19.3 23.8 27.6 309 33.9 36.5
Weighted Natural - 14.2 19.3 23.6 272 — - -
Optimal - 13.6 18.8 23.3 271 - - -

4.3. The Growth of the Condition Numbers. Mathematical analysis predicts
the growth in the condition number as a function of the mesh refinement, H/h, and
the number of subdomains, but it does not give good estimates of the actual numerical
values. Our results are given in Tables 3 and 4. For the preconditioner labeled Bya we
have used one multigrid V—cycle to solve the subdomain problems approximately. The
difference in the condition number between using one multigrid V—cycle, two multigrid
V—cycles, and an exact interior solver is very small. Similar results have previously been
noted by Borgers [3] and Haase, Langer, and Meyer [13] for problems in two dimensions
but have they not yet been fully explained theoretically.
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TABLE 3
Growth in condition numbers for 64 subdomains (H =1/4)

H/h | Unknowns K S BC_;IS Bc_;}‘ K BBIS BBLK
4 3,375 103 53.81 94 94 67.6 67.7
8 29,791 414 122 15.0 15.0 107 107
12 103,823 933 192 20.1 20.1 131 133
16 250,047 | 1,656 261 24.2 24.4 150 152
20 493,039 | 2,593 331 27.9 28.1 165 166
24 857375 | 3,734 401 311 313 - -
98 | 1.367.631 | 5,083 -  33.9  34.2 - -
32 2,048,383 | 6,640 — 36.5 36.9

Observed Growth (1/h)*  1/h (1 + log(H/R))? (1;]-]2)(1 + logEH/h))2

TABLE 4
Growth in condition numbers for 216 subdomains (H =1/6)

H/h | Unknowns K S BC_;IS Bc_;}‘ K BBI S Bg}q K
4 12,167 232 119 9.9 9.9 155 149
8 103,823 933 269  16.1 16.1 230 232
12 357,911 | 2,099 421 21.5 21.5 281 283
16 857,375 | 3,734 573 26.0 26.1 318 321
20 1,685,159 | 5,835 726  29.8 30.0 436 350

Observed Growth (1/h)* 1/h (1 +log(H/R))* (1/H*)(1 +log(H/h))?

4.4. A Comparison with a Bramble, Pasciak, and Schatz Algorithm.
Since our basic algorithm is similar to one of the important algorithms introduced
by Bramble, Pasciak, and Schatz [4], we have reproduced the experiments reported in
their paper using the preconditioner Bg'. The first set of experiments is for a unit cube
divided into eight subcubes. The stiffness matrix is derived from the usual finite dif-
ference discretization for the Laplace operator. The second problem is for a unit cube
divided in 27 subcubes with a different constant coefficient on each subcube; see [4] for
the values used. We see from Tables 5 and 6 that for this class of problem, the two
preconditioners produce similar condition numbers. We note that these are relatively
small problems and that diagonal scaling also works well.

TABLE b
Comparison with BPS IV: Laplacian operator

Condition numbers
H/h | Diagonal | BPS Bgz'S | Unknowns
4 25.3 13.9 10.3 343
8 103 17.7 129 3,375
16 414 23 18.4 29,791
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TABLE 6
Comparison with BPS IV: coefficients with jumps

Condition numbers

H/h | Diagonal | BPS Bz'S | Unknowns
4
8

63.4 14.1 9.0 1,331
265.4 18.3  14.5 12,167

4.5. Timings. We next present timing results on a 32-node Intel iPSC /860 hyper-
cube for a set of intentionally simple examples. We consider three problems. The first
two problems are on the unit cube; the third is on a more complicated region depicted
in Fig. 4.5. The unit cube is uniformly divided into subcubes €2;;;. In the third problem
we use 244 subdomains which are not cubes; their aspect ratios are 4:5:20.

e Problem 1. Find v” such that
Z/ ein(Vu', Vol = / fol, Yol e VI,
ijk /Sbisk Q@
The boundary conditions are given by u" = 0 on 9. The coefficients ¢;;; are
constant on each subdomain and have large jumps between neighboring sub-
domains. Specifically, e;;; = sin?(162)(e'87sn(4) 4 150-2)) £ 1 where (z,y, 2)
is the center of ;5. The right-hand side is given by f(x,y,2) = ze” sin(y).
e Problem 2. Find v” such that
/(Vuh,Vvh) _ / foh, Wt e vh,
Q Q
" is constrained to be zero on one face of the cube and is free on
the rest of the boundary. The right-hand side is the same as in Problem 1.
e Problem 3. This problem is the same as in Problem 2 except that the domain
is as depicted in Fig. 4.5. The solution " is fixed on the bottom of the object
and free on the rest of the object’s boundary.

The solution u

All the results are for one multigrid V-cycle sweep as an approximate solver for the
interior problems, that is, two sweeps per subdomain per iteration. This choice was
made because additional multigrid sweeps did not result in a decrease in the number
of outer iterations. The times needed when exact interior solvers are used (i.e. with
Bz'S) are much higher than those for the approximate solver. In addition, we cannot
run the large problems when using exact interior solvers, as the sparse factors take a
large percentage of the available space. For instance, for Problem 2 with 64 subdomains,
the largest problem we could solve using the sparse interior solver was with a mesh of
H/h = 16, while with multigrid we could solve problems with meshes up to H/h =
32. This fact suggests that for well-behaved problems like the Poisson problem, exact
interior solvers, such as banded or sparse linear system solvers, are too expensive to
be competitive. For more difficult problems, we do not yet know which approach is
superior. We used the ordering routines in the Yale Sparse Matrix Package to order
the unknowns for the sparse interior solvers. The nested dissection ordering might be a
better choice. The results for Problems 1 and 2 are given in Tables 7 and 8, respectively.
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For Problem 3 (see Table 9), the iteration counts are slightly higher than for Prob-
lem 2. It is well known that increasing aspect ratios cause a decay in the convergence
rate of domain decomposition algorithms. In Problem 3 the algorithm with a diagonal
scaling as the wirebasket problem performs poorly; see the column labeled BBLK in
Table 9. This poor performance is because the condition number of the preconditioned
problem grows like 1/H?, so the preconditioner becomes less effective when a large
number of subdomains is used.

4.6. Speed of Computational Kernels. Most large numerical codes have a few
routines that perform the bulk of the numerical calculations and use most of the CPU
time. We refer to these routines as the computational kernels. The best-known compu-
tational kernels are the BLAS and FFT. The computational kernels involve no commu-
nication with other processes and should ideally vectorize and pipeline well. It is also
important that they use the data and instruction caches well. Since the computational
kernels dominate the time of the entire calculation, their optimization is important. On
certain processors, the Intel 1860 for example, the replacement of Fortran or C com-
putational kernels with assembler language kernels can result in large decreases in the
time of the calculation at the expense of a great deal of careful hand-coding of assem-
bler code. We note that improvement in the speeds of computational kernels is a local
optimization and does not involve communication or parallelization.

The present code is all written with standard Fortran and C computational kernels.
We have observed the following floating-point speeds; see Fig. 4.6.

e Dot product; 4.9 million floating-point operations per second (MFLOPS).
e Matrix multiply; 7.8 MFLOPS.
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TABLE 7

Problem 1 with 64 subdomains (time in seconds)

Number Number
H/h | Unknowns Processors Diagonal BC_;};K BBLK
8 29,791 Number of Iterations 86 19 42
Condition Numbers 221 14.1 62
4 14.1 14.8 23.0
8 8.3 8.8 12.8
16 5.7 5.4 8.0
32 3.9 3.7 5.0
16 250,047 | Number of Iterations 169 24 49
Condition Numbers 885 23.1 89
4 94.2 85.6 155.1
8 51.7 44.9 80.9
16 31.2 25.9 44.3
32 17.0 14.3 23.2
20 493,039 | Number of Iterations 212 26 50
Condition Numbers 1,379 26.6 99
8 113.0 109.4  187.7
16 65.2 58.7 98.9
32 34.2 30.4 50.7
24 857,375 | Number of Iterations 256 28 53
Condition Numbers 1,984 29.5 107
8 193.7 163.5  290.5
16 110.1 86.8 151.9
32 57.4 44.8 77.6
32 | 2,048,383 | Number of Iterations 343 30 55
Condition Numbers 3,525 34.0 119
32 153.9 119.3  207.3

DAXPY; 4.8 MFLOPS.

Multigrid solver; 3.4 MFLOPS.
Diagonal preconditioner; 2.7 MFLOPS.
Sparse factorization; 3.8 MFLOPS.
Sparse triangular solvers; 4.9 MFLOPS.
These results were obtained from the largest set of problems listed in Table 8. They do
not fit completely in cache.

In the problem with 2,130,048 unknowns listed in Table 8, the per-processor flop
rate for the entire calculation (from distributing the geometric information to the
nodes, to solving the system) was 4.0 MFLOPS for the diagonal preconditioner and 3.1
MFLOPS for the more sophisticated preconditioner. Yet the diagonal preconditioner
took more than twice as much time. The lower overall flop rate for the sophisticated
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TABLE 8
Problem 2 with 64 subdomains (time in seconds)

Number Number

H/h | Unknowns Processors Diagonal BC_;};K BBLK

8 34,848 Number of Iterations 129 17 65
Condition Numbers 4,972 16.9 1,200

4 24.1 16.6 40.7

8 15.5 9.0 22.2

16 8.5 5.5 13.0

32 5.4 3.9 7.5

16 270,400 | Number of Iterations 262 23 78
Condition Numbers 19,916 27.2 1,644
4 159.8 92.9 261.7

8 86.9 48.2 136.1

16 49.7 26.1 72.2

32 26.6 14.1 37.6

20 524,880 | Number of Iterations 325 25 83
Condition Numbers 31,121 31.6 1,788
8 168.0 89.9 265.3
16 94.1 48.2 138.4

32 49.8 25.3 71.4

24 903,264 | Number of Iterations 388 28 89
Condition Numbers 44 817 38.8 1,911
8 304.2 170.3  481.6
16 168.2 89.5 248.5

32 87.6 46.8 129.1

32 | 2,130,048 | Number of Iterations 522 32 91
Condition Numbers 79,682 51.0 2,101
32 233.4 130.8  347.8

preconditioner can be explained by the much lower flop rate of the multigrid solver.

The per-processor flop rate was obtained by taking the total number of floating-
point operations performed on the processor and dividing by the total time the processor
was in operation, including the time it is communicating with the other processors.
While this number is a useful indicator of how well the processor is being utilized, it
should not be overemphasized. The goal is to minimize total computation time. The
best algorithm is the one that does exactly that, even if its per-processor flop rate is
lower than that for other algorithms.

In Figures 4.6 and 4.6, we graph the percentage of total wall-clock time spent in each
portion of the code for the diagonal preconditioned and fully preconditioned problems.
This gives a clear indication of what in the code can most fruitfully be optimized. We
also graph, in Fig. 4.6, the percentage of wall-clock time spent in various parts of the
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TABLE 9
Problem 3 with 244 subdomains (time in seconds)

Number Number

H/h | Unknowns Processors Diagonal BC_;};K BBLK

8 132,792 | Number of Iterations 309 20 152
Condition Numbers 19,657 20.8 4,710

8 143.2 54.9 217.4

16 78.2 35.9 114.9

32 48.3 26.6 66.4

16 1,030,512 | Number of Iterations 617 35 179
Condition Numbers 78,486 4.1 6,428

16 427.1 155.1  629.0

32 237.2 88.5 332.1

20 | 2,000,460 | Number of Iterations 772 39 187
Condition Numbers 122,582 93.9 6,981

32 453.4 157.5  622.7

Matrix Multiply es—
Multigrid Solver |
Diagonal Scale ]
Sparse Factorization m...——
Sparse Solvers m——
Face Solvers m—

| T T T T T T T |
00 1.0 20 30 40 50 60 7.0 8.0

MFLOPS

Fia. 3. Flop rate wn the computational kernels

code for Problem 2 when the sparse interior solver is used. This is for 64 subdomains
with a mesh of H/h = 16, the largest problem we could fit onto 32 processor nodes
while using the sparse direct solver to solve the interior problems. The overall flop rate
obtained here was 3.8 MFLOPS.

For the largest problem for which the sparse solver was used, 4.7% of the total
computation time was spent on interprocessor communication. When multigrid was
used to approximately solve the interior problems, the communication time increased
to 11.7% of the total time. With diagonal preconditioning, 26.2% of the time was
devoted to interprocessor communication.

5. Conclusions and Future Directions. We believe that our results indicate
that the iterative substructuring approach is a viable technique for the solution of
elliptic partial differential equations in three dimensions on modern distributed-memory
machines. For model problems, the iterative substructuring algorithm performs better
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than diagonal scaling, but not by an enormous factor. In fact, it would appear that is
not enough to justify the extra burden imposed by coding the algorithms. However,
we believe that for nontrivial problems, the difference between the two approaches in
terms of computational time will increase.

We also note that for solving extremely large problems, it is important to use
approximate solvers for the interior problems. The fill from a band or sparse solver
begins to dominate the memory usage, making it impossible to solve extremely large
problems. For difficult problems, we may not be able to find an iterative solver for
the interior problems that performs well enough to serve as replacement for the direct
solver, and this fact might limit the size of the problems that we could solve.

The iterative substructuring algorithm considered here works well on simple, piece-
wise, constant coefficient problems. To be useful in practice, it must be adaptable to a
wide range of multicomponent elliptic partial differential equations. We therefore plan
to focus on adapting each piece of the algorithm to a wide range of differential equations.
The parts of the algorithm that must be generalized are the face preconditioners, the
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wirebasket coarse problem, and the interpolation onto the faces from the wirebasket. In
addition, we shall consider other approaches to building interior iterative solvers, such
as incomplete factorizations. Finally, we shall consider nonsymmetric problems.
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his assistance in revising this paper.
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